LASmoons: Chris J. Chandler

Chris J. Chandler (recipient of three LASmoons)
School of Geography
University of Nottingham, UNITED KINGDOM

Background:
Wetlands provide a range of important ecosystem services: they store carbon, regulate greenhouse gas emissions, provide flood protection as well as water storage and purification. Preserving these services is critical to achieve sustainable environmental management. Currently, mangrove forests are protected in Mexico, however, fresh water wetland forests, which also have high capacity for storing carbon both in the trees and in the soil, are not protected under present legislation. As a result, coastal wetlands in Mexico are threatened by conversion to grazing areas, drainage for urban development and pollution. Given these threats, there is an urgent need to understand the current state and distribution of wetlands to inform policy and protect the ecosystem services provided by these wetlands.
In this project we will combine field data collection, satellite data (i.e. optical remote sensing, radar and LiDAR remote sensing) and modelling to provide an integrated technology for assessing the value of a range of ecosystem services, tested to proof of concept stage based on carbon storage. The outcome of the project will be a tool for mapping the value of a range of ecosystem services. These maps will be made directly available to local stakeholders including policy makers and land users to inform policy regarding forest protection/legislation and aid development of financial incentives for local communities to protect these services.

Wetland classification in the Chiapas region of Mexico

Goal:
At this stage of the project we have characterized wetlands for three priority areas in Mexico (Pantanos de Centla, La Encrucijada and La Mancha). Next stage is the up scaling of the field data at the three study sites using LiDAR data for producing high quality Canopy Height Model (CHM), which has been of great importance for biomass estimation (Ferraz et al., 2016). A high quality CHM will be achieved using LAStools software.

Data:
+
LiDAR provided by the Mexican National Institute of Statistics and Geography (INEGI)
+ average height: 5500 m, mirror angle: +/- 30 degrees, speed: 190 knots
+ collected with Cessna 441, Conquest II system at 1 pts/m².

LAStools processing:
1)
create 1000 meter tiles with 35 meter buffer to avoid edge artifacts [lastile]
2) classify point clouds into ground and non-ground [lasground]
3) normalize height of points above the ground [lasheight]
4) create a Digital Terrain and Surface Model (DTM and DSM) [las2dem]
5) generate a spike-free Canopy Height Model (CHM) as described here and here [las2dem]
6) compute various metrics for each plot and the normalized tiles [lascanopy]

References:
Ferraz, A., Saatchi, S., Mallet, C., Jacquemoud S., Gonçalves G., Silva C.A., Soares P., Tomé, M. and Pereira, L. (2016). Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory. Remote Sensing, 8(8), 653.

Kommentar verfassen

Nach oben scrollen