tutorials

Scrutinizing LiDAR Data from Leica’s Single Photon Scanner SPL100 (aka SPL99)

We show how simple reordering and clever remapping of single photon LiDAR data can reduce file size by a whopping 50%. We also show that there is at least one Leica’s SPL100 sensor out there that should be called SPL99 because one of its 100 beamlets (the one with beamlet ID 53) does not seem to produce any […]

Scrutinizing LiDAR Data from Leica’s Single Photon Scanner SPL100 (aka SPL99) Read More »

Complete LiDAR Processing Pipeline: from raw Flightlines to final Products

This tutorial serves as an example for a complete end-to-end workflow that starts with raw LiDAR flightlines (as they may be delivered by a vendor) to final classified LiDAR tiles and derived products such as raster DTM, DSM, and SHP files with contours, building footprint and vegetation layers. The three example flightlines we are using

Complete LiDAR Processing Pipeline: from raw Flightlines to final Products Read More »

New Step-by-Step Tutorial for Velodyne Drone LiDAR from Snoopy by LidarUSA

The folks from Harris Aerial gave us LiDAR data from a test-flight of one of their drones, the Carrier H4 Hybrid HE (with a 5kg maximum payload and a retail price of US$ 28,000), carrying a Snoopy A series LiDAR system from LidarUSA in the countryside near Huntsville, Alabama. The laser scanner used by the Snoopy A series is a

New Step-by-Step Tutorial for Velodyne Drone LiDAR from Snoopy by LidarUSA Read More »

First Look with LAStools at LiDAR from Hovermap Drone by CSIRO

Last December we had a chance to visit the team of Dr. Stefan Hrabar at CSIRO in Pullenvale near Brisbane who work on a drone LiDAR system called Hovermap. This SLAM-based system is mainly developed for the purpose of autonomous flight and exploration of GPS-denied environments such as buildings, mines and tunnels. But as the SLAM algorithm

First Look with LAStools at LiDAR from Hovermap Drone by CSIRO Read More »

Processing Drone LiDAR from YellowScan’s Surveyor, a Velodyne Puck based System

Points clouds from UAVs have become a common sight. Cheap consumer drones equipped with cameras produce points from images with increasing quality as photogrammetry software is improving. But vegetation is always a show stopper for point clouds generated from imagery data. Only an active sensing technique such as laser scanning can penetrate through the vegetation

Processing Drone LiDAR from YellowScan’s Surveyor, a Velodyne Puck based System Read More »

Nach oben scrollen